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Abstract
A novel method is introduced in order to treat the dissipative dynamics of
quantum systems interacting with a bath of classical degrees of freedom.
The method is based upon an extension of the Nosè–Hoover chain (constant
temperature) dynamics to quantum-classical systems. Both adiabatic and
nonadiabatic numerical calculations on the relaxation dynamics of the spin-
boson model show that the quantum-classical Nosè–Hoover chain dynamics
represents the thermal noise of the bath in an accurate and simple way.
Numerical comparisons, both with the constant-energy calculation and with
the quantum-classical Brownian motion treatment of the bath, show that the
quantum-classical Nosè–Hoover chain dynamics can be used to introduce
dissipation in the evolution of a quantum subsystem even with just one degree
of freedom for the bath. The algorithm can be computationally advantageous in
modelling, within computer simulation, the dynamics of a quantum subsystem
interacting with complex molecular environments.

PACS numbers: 03.65.Yz, 05.30.−d

One of the most natural ways to make a quantum system follow a dissipative dynamics is
achieved by putting it into contact with a thermal bath. Since usually one is not interested
in the detailed time evolution of the bath degrees of freedom, it may also be convenient
to approximate the bath dynamics by means of a classical description. When one faces
the problem of calculating the influence of an environment over a quantum subsystem, this
approach leads to the representation of (a certain class of) open quantum systems [1] by means
of mixed quantum-classical theories. Examples can be found in many phenomena connected
to quantum optics [2] and quantum information theory [3]. Typically, this is the case of
cosmology where, due to the perduring lack of a full quantum theory of gravitation, one is
forced to approximate formalisms in order to treat the interaction of quantum and classical
degrees of freedom [4]. In many situations, condensed-matter quantum systems at finite
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temperature can also be treated with mixed quantum-classical theories. In light of the above
discussion, one can certainly conclude that mixed quantum-classical approximations can be
used in open quantum systems to describe many processes which are relevant to various fields
of research. It is worth noting that mixed quantum-classical theories [5] applied to condensed-
matter systems can treat classical molecular bath which can be as complex as state-of-the-art
molecular dynamics simulation techniques permit nowadays.

In the original constant-energy (NVE) formulation, mixed quantum-classical algorithms
require many environmental degrees of freedom in order to describe the dissipative dynamics
of the quantum subsystem. This has been shown within a path-integral influence functional
approach [6]. However, quantum-classical dynamics has been recently generalized [7] in order
to be unified with the constant-temperature simulation method originally developed by Nosè
and Hoover [8] (more generally, the author in [7] proposed a scheme in order to unify quantum-
classical dynamics with many energy-preserving phase space flows [9]). Therefore, one can
think of using quantum-classical Nosè–Hoover (NH) dynamics in order to describe dissipative
effects and, in particular, the constant-temperature relaxation dynamics of a relevant quantum
subsystem. In practice, in order to overcome possible problems with ergodicity in classical
phase space, it is more convenient to generalize the Nosè–Hoover chain (NHC) method of
Martyna and coworkers [10] to the quantum-classical case and to adopt it in place of the NH
dynamics. However, the choice of the NHC dynamics can be viewed as a mere technical point
with no deep conceptual implication as far as quantum-classical theories are concerned. In
this communication, by simulating the relaxation dynamics of the spin-boson model [11], I
show that the quantum-classical NHC dynamics can be adopted in order to describe dissipative
effects in quantum-classical systems by means of a minimal (with respect to the number of
degrees of freedom explicitly taken into account) representation of the classical bath.

The quantum-classical Hamiltonian of the spin-boson model reads

Ĥ sb = −h̄�σ̂x +
Nb∑
j=1

(
P 2

j

2MJ

+
1

2
Mjω

2
jR

2
j − cjRj σ̂z

)
(1)

where 2h̄� is the energy gap of the isolated two-state system, σ̂z and σ̂x are Pauli’s matrices, Rj

and Pj are the coordinates and momenta, respectively, of Nb harmonic oscillators with mass
Mj and frequencies ωj making up the classical bath. The other parameters of the system, i.e.,
(Mj , ωj , cj ), can be fixed by requiring that the harmonic bath is described by an Ohmic spectral
density. In order to study the relaxation dynamics of this model [12], one can assume that the
system is initially in an uncorrelated state with the quantum subsystem in state |up〉 and the
classical harmonic bath in thermal equilibrium. The corresponding quantum-classical density
matrix can be found starting from the full quantum expression by means of a partial Wigner
transform [13] and was explicitly written in [12]. The NVE quantum-classical dynamics of
this system is formally exact [12] (i.e., the quantum-classical equations of motion have the
same form that would arise within a full quantum treatment) and numerical results, which
agree very well with those obtained by means of more sophisticated path-integral iterative
techniques [6], are available in the literature [12]. Such NVE results, which were obtained
with Nb = 200, will be compared here with those obtained with calculations performed
by means of the quantum-classical NHC dynamics and with the bath made up by just one
harmonic oscillator (Nb = 1).

For the spin-boson model, the quantum-classical NHC dynamics can be defined upon
introducing an extended Hamiltonian with a chain of just two thermostat variables

Ĥ (NHC) = Ĥ sb +
p2

η1

2mη1

+
p2

η2

2mη2

+ NbkBT η1 + kBT η2, (2)
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where T is the temperature of the bath thermalizing the quantum spin, η1, η2, pη1 , pη2 are the
Nosè variables and mη1 ,mη2 are fictitious masses. Following [7], the quantum-classical NHC
bracket can be defined as

(Ĥ (NHC), σ̂z)(NHC) = i

h̄
[Ĥ (NHC) σ̂z]

[
0 1 + h̄�(NHC)

2i

−1 − h̄�(NHC)

2i 0

] [
Ĥ (NHC)

σ̂z

]
, (3)

where �(NHC) is a bracket operator whose action between two quantum-classical variables is
defined as

ξ̂ (X)�(NHC)χ̂ (X) = −
∑
IJ

∂ξ̂

∂XI

B(NHC)
IJ

∂χ̂

∂XJ

. (4)

Adopting as a convention for the point of the extended Nosè phase space X =
(R, η1, η2, P , pη1 , pη2), the antisymmetric NHC matrix reads

B(NHC) =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 −P 0
0 −1 0 P 0 −pη1

0 0 −1 0 pη1 0




. (5)

It is worth noting that, since the Nosè coordinates are intrinsically classical, a quantum-
classical treatment of such a constant-temperature dynamics is conceptually correct and,
moreover, allows one to address nonadiabatic effects. Other approaches [14], which do
not use a quantum-classical bracket, do not seem to permit nonadiabatic calculations in a
straightforward manner. The equations of motion can be written in the adiabatic basis as

d

dt
χαα′

(X, t) =
∑
ββ ′

iL(NHC)
αα′,ββ ′χ

ββ ′
(X, t) (6)

where

iL(NHC)
αα′,ββ ′ = iωαα′δαβδα′β ′ + iL(NHC)

αα′ δαβδα′β ′ − Jαα′,ββ ′ (7)

iL(NHC)
αα′ = 1

2

∑
IJ

B(NHC)
IJ

∂
(
Hα

(NHC) + Hα′
(NHC)

)
∂XJ

∂

∂XI

, (8)

and ωαα′ = (Eα(R) − Eα′(R))/h̄. The quantum transitions operator, J , is defined as in
the constant-energy case [7]. One wants to calculate the time-dependent quantum-classical
average:

〈σ̂z(X, t)〉 =
∑
αα′

∫
dX ρα′α

W σαα′
z (X, t) (9)

where σαα′
z (X, t) is given by equation (6). Details of the numerical algorithm for calculating

equation (9) both in the adiabatic and nonadiabatic limit can be found in [12]. It is useful
to recall that the nonadiabatic quantum-classical dynamics can be pictured as a piecewise
deterministic propagation of the classical phase space point X over the energy surface (αα′)
interspersed by stochastic quantum transitions (realized by the action of J ). Note also that, in
the NVE case, one must have Nb � 200, as proven by a cumulant expansion analysis of the
influence functional entering the path-integral iterative procedure of [6].
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Figure 1. Adiabatic dynamics of the spin-boson model: β = 0.3,� = 1/3, ωmax = 3, ξ = 0.007.
The continuous black line represents the NVE results with Nb = 200; the white circles represent
the BD results with Nb = 1 and ζ = 1; the black circles represent the NHC results with Nb = 1.

In principle, dissipation might also be described by means of the quantum-classical
Brownian dynamics (BD) that was introduced in [15]. In such a case, the quantum-classical
average of σ̂z is still given by an equation similar to (9) where, however, the time evolution
is achieved by means of a quantum-classical Langevin–Liouville operator, whose explicit
expression in the adiabatic basis is known [15]. Such a stochastic operator is defined in terms
of a friction constant, ζ , and of a Gaussian white noise process, ξ(t), with the properties
〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t ′)〉 = 2kBT ζδ(t − t ′). Therefore, it is interesting to check whether the
Brownian dynamics of a bath with Nb = 1 can also lead to an accurate dissipative dynamics.
However, as shown in the following, especially when considering nonadiabatic effects, the
numerical results prove that the NHC quantum-classical dynamics provides a scheme which
is much more accurate and robust than that arising from the Brownian dynamics.

The spin-boson model has been simulated by using dimensionless coordinates [12].
Hundred thousand trajectories were produced in order to sample the initial condition in the
nonadiabatic calculations [12]. The system parameters were � = 1/3 and ωmax = 3, while the
Kondo parameter and the reduced temperature took the two sets of values (ξ = 0.007, β = 0.3)

and (ξ = 0.1, β = 3). The results of the NVE calculation, with a bath composed of Nb = 200
oscillators, were compared with those obtained with just one oscillator (Nb = 1) in the two
cases where either the NHC dynamics or the Brownian dynamics is used. The outcome is
that in the NHC dynamics a single oscillator provides a good numerical representation of
the dissipative quantum dynamics of the spin. Moreover, it turns out that when nonadiabatic
transitions are taken into account, the quantum-classical NHC dynamics provides very good
results while the Brownian dynamics fails badly. Note that the figures in this communication
display the results of BD calculations performed only with ζ = 1 (in dimensionless units).
However, various other calculations were performed, with effective values of ζ between 0
and 10, without obtaining any improvement in the nonadiabatic case. Figures 1 and 2 show
the results of the adiabatic calculations for the set of parameters (ξ = 0.007, β = 0.3)

and (ξ = 0.1, β = 3), respectively. In the adiabatic case, both the NHC and Brownian
dynamics describe well the dissipative evolution of the quantum subsystem interacting with a
single oscillator. The inclusion of nonadiabatic transitions (up to six for each trajectory in the
quantum-classical ensemble) shows that, with Nb = 1, the NHC dynamics is still very accurate
while the BD evolution becomes numerically unstable at short times. This is not completely
unexpected since when the system can switch from one potential surface to another, because of
the nonadiabatic transitions, the BD dynamics (in the case of Nb = 1) lacks of any equilibrating
mechanism. Instead, the quantum-classical NHC dynamics still conserves the Hamiltonian
along the trajectory. Such a conservation provides a robust stabilization mechanism even for
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Figure 2. Adiabatic dynamics of the spin-boson model: β = 3,� = 1/3, ωmax = 3, ξ = 0.1.
The continuous black line represents the NVE results with Nb = 200; the white circles represent
the BD results with Nb = 1 and ζ = 1; the black circles represent the NHC results with Nb = 1.
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Figure 3. Non-adiabatic dynamics of the spin-boson model including up to six quantum transitions:
β = 0.3,� = 1/3, ωmax = 3, ξ = 0.007. The continuous black line represents the NVE result
with Nb = 200; the black circles represent the NHC results with Nb = 1; the white circles (joined
with a dashed line in order to help the eye) represent the BD results with Nb = 1 and ζ = 1.
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Figure 4. Nonadiabatic dynamics of the spin-boson model including up to six quantum transitions:
β = 3, � = 1/3, ωmax = 3, ξ = 0.1. The continuous black line represents the NVE results with
Nb = 200; the black circles represent the NHC results with Nb = 1; the white circles (joined with
a dashed line in order to help the eye) represent the BD with Nb = 1 and ζ = 1.

calculations with baths with very few degrees of freedom. Figure 3 shows the nonadiabatic
results for the set of parameters (ξ = 0.007, β = 0.3) while those obtained with the set
(ξ = 0.1, β = 3) are displayed in figure 4. In general, the results obtained with the NHC
nonadiabatic evolution appear to be numerically more stable and smoother than those obtained
with NVE dynamics. This is even more apparent in a slightly stronger coupling regime (see
figure 4).
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Figure 5. Adiabatic dynamics of the spin-boson model under the action of a static perturbation of
the form Ĥ ext = −h̄γs σ̂z: β = 3, � = 1/3, ωmax = 3, ξ = 0.1, γs/h̄ = (1/3)�. The continuous
black line represents the NVE results with Nb = 200; the black circles represent the NHC results
with Nb = 1.

It must be remarked that surface-hopping calculations within nonadiabatic quantum-
classical dynamics are, for the moment, limited to relatively short times because of numerical
instabilities [12]. To address this issue, a quantum-classical non-linear formalism has been
recently proposed [16]. However, such long-time integration problems are not related to the
NHC dynamics but challenge quantum-classical approximations of quantum dynamics on a
more general level. In order to clarify this point, figure 5 displays the results of a long-
time calculation, performed in the adiabatic approximation. Since there is a great interest
in the phenomenon of driven quantum tunnelling [17], a static perturbation of the form
Ĥ ext = −h̄γs σ̂z was added to the unperturbed spin-boson Hamiltonian in equation (1), and
simulations were carried out both in the NVE (Nb = 200) and NHC cases (Nb = 1) with
γs/h̄ = (1/3)� while the other system parameters took the same values as in the calculations
whose results are illustrated in figures 1 and 3. The results displayed in figure 5 shows clearly
that, in the adiabatic approximation, the numerical agreement between the NVE dynamics
(Nb = 200) and the NHC dynamics (Nb = 1) is very good even over long-time intervals.

The results provided in this communication suggest the possibility of representing the
environmental noise, leading to dissipative quantum dynamics, by means of deterministic
NHC quantum-classical dynamics. Such an idea can have deep conceptual implications since
there is a subtle connection between thermal and quantum fluctuations [18]. Moreover, the
algorithms presented here might open novel advantageous routes for the computer simulation
of quantum dynamics in open molecular environments. Within condensed-matter systems, an
example that might be studied by means of the approach illustrated in this communication is
provided by the system recently investigated in [19]: a retinal chromophore molecule evolving
according to short-time quantum coherent dynamics in bacteriorhodopsin. As already shown
in [20], a minimal model of such chromophore–protein systems can be built by explicitly
considering the chromophore molecule itself and the nearest neighbour amino acids, belonging
to the tight-binding pocket in which the chromophore is contained. On the short-time scale
of the coherent quantum dynamics of the chromophore, one might think of representing the
dissipation entailed by the rest of the protein by means of a deterministic NHC dynamics with
a minimal bath. It is also worth to note that there is a great interest in the field of quantum
information in the phenomenon of driven quantum tunnelling [17]. In particular, recent work
focuses on time-dependent external driving [21]. In order to deal with such situations, one
should generalize the quantum-classical approach presented here in order to unify it with
the techniques of non-equilibrium molecular dynamics simulations. Although non-trivial
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algorithmic issues might be expected, this is something which is possible in principle and that
deserves a thorough future investigation.

In conclusion, the quantum-classical NHC dynamics may find interesting applications in
various fields: in fact, it may be used to simulate not only systems in the fields of chemical
physics or biophysics but also in quantum optics [2] and quantum computing [3].
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